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To obtain the radiation field, (28) and (29) are sub-
stituted in (84), and the resulting integral is evaluated
by the method of stationary phase for kp>>1. The result
1s

2 \1/2
[Hy(x,, Z)]R = <——> eilbo—(x/9))

wkp
(1 4+ cos )12

(1 4 sec ay)'/? (cos®> 6 — sec? ay)

fan ay

(87)

The total power in the reflected surface wave per unit
width of the screen is easily computed from (86), (74)
and (76) as

2 sin (2%}

. (88
k(1 4 sec ay)? (88)

P, = Zf i-E,. X H*dz =
0

‘The power radiated per unit width of the screen, per
unit area in the direction 6 is obtained from (87), (74),
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Summary—A characteristic equation and a cutoff equation are
derived for higher order surface-wave modes on lossless isotropic
cylinders with arbitrary radial permittivity variation. The derivation,
based on the use of the fundamental matrix of a set of differentia]
equations, reduces analytical work and results in expressions well
suited for digital computer evaluation of surface-wave eigenvalues
and mode spectra. The theory is applied in an investigation of HE,,
and EHx mode propagation for a particular set of models for the
radially varying permittivity. Typical results showing eigenvalue
variation, dispersion characteristics and radial field variation, includ-
ing experimental verification of dispersion characteristics, are shown.
The method of analysis can be extended to anisotropic cylinders with

permittivity a function of both radius and frequency.
v
l surface-wave propagation along lossless isotropic
cvlinders with radial permittivity variation. The
permittivity variation may be described by a function
of the radius or an experimental curve, with discontinui-

ties allowed. Step permittivity variation, such as that
created by dielectric rods and tubes made of constant
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(76) and (28) when Ep>>1 as
S = Re ﬁ'ER X HR*
2 1 1+ cosé
= — (89)
mkp (1 4 secay) (sec?a; — cos? )
Hence, the total radiated power is
2w 4 1 cos ay
Pr =f Spdf = — (90)
0 P (1 + sec a1) tan oy

It is to be noted that P, 4+ Pg is equal to P, as given in
(35). The power reflection coefficient and the radiation
pattern are noticed to be the same with or without the
terminating perfectly conducting half-plane.
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Inhomogeneous Cylinders*

P. SCHLESINGERY, MEMBER, IRE

permittivity material,!:? constitutes a special case of the
problem.

Electromagnetic-wave propagation along cylindrical
structures inhomogeneous in the transverse plane has
been investigated by Adler.3* Some basic results about
orthogonality, power flow and phase constants are ob-
tained but the general problem of formulating the dif-
ferential equations and obtaining their solutions is not
considered. An interesting way to formulate differential
equations for fields in inhomogeneous media has been
proposed by Smith.® The approach is based on a trans-
formation which contains the space dependent per-
mittivity. This involves work with quantities other than
electromagnetic fields and may not be desirable in a

L P. Diament, S. P. Schlesinger, and A. Vigants, “A dielectric sur-
face wave structure: the V-line,” IRE TRrANs. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-9, pp. 332-337; July, 1961.

2 E. Snitzer, “Cylindrical waveguide modes,” J. Opt. Soc. Am.,
vol. 51, pp. 491-498; May, 1961.

3 R. B. Adler, “Properties of Guided Waves on Inhomogeneous
Cylindrical Structures,” Electronics Res. Lab., M.L.T., Cambridge,
Mass., Tech. Rept. No. 102; May 27, 1949.

4 R. B. Adler, “Waves on inhomogeneous cvlindrical structures,”
Proc. IRE, vol. 40, pp. 339-348; March, 1952.

5 P. D. P. Smith, “Artificial field equations for a region where p
and e vary with position,™ J. dppl. Phys., vol. 21, pp. 1140-1149;
November, 1950.
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complicated surface-wave problem. Considerable insight
into the problems of formulation of differential equa-
tions for electromagnetic fields in inhomogeneous media
is obtained from Nisbet's work.® A result of particular
interest is a set of conditions relating the order of the
differential equations to the coordinate syvstem and the
functional dependence of the inhomogeneities. Applica-
tion of these conditions to the radially inhomogeneous
cylindrical medium shows that differential equations of
higher order than the second can be expected.

A convenient general approach for the determination
of inhomogeneous cylinder propagation characteristics
does not appear to be available. In view of this it seems
advisable to disregard the complicated methods of gen-
eration of differential equations while searching for a
way to solve the radially inhomogeneous cylinder prob-
lem and to use Maxwell's equations directly.”® thus
avoiding confusion of physical intuition by complicated
and possibly unnecessary mathematical devices.

The complexity of the inhomogeneous cylinder prob-
lem is due to differential equations of the fourth order
with variable coefficients and a geometry which makes
it difficult to use expansions in series of known functions.
The radial variation of fields inside the inhomogeneous
cylinder will in general be given by untabulated and
unknown functions, and hence computation will be re-
quired to find the parameters characterizing surface-
wave propagation. Realization of this leads to the for-
mulation of a characteristic equation based on the appli-
cation of the fundamental matrix of a set of differential
equations, unusual in the solution of surface wave prob-
lems.

The results are applied in an investigation of HEy
and EHy modes for a particular set of permittivity
models, with experimental verification in some cases.

THEORY

The Characteristic and Cutoff Equations

The lossless, isotropic, radially inhomogeneous cylin-
der shown in Fig. 1 presents a boundary value problem
with solutions characterized by eigenvalues of a char-
acteristic equation. Formulation of the boundary value
problem requires knowledge of solutions inside the cyl-
inder. The separation of variables technique applied to
Maxwell’'s equations shows that solutions of the form
exp in¢ for the circumferential variation of fields are

8 A. Nisbet, “Electromagnetic potentials in a heterogeneous non-
conducting medium,” Proc. Roy. Soc. (London) A, vol. 240, pp. 375—
381; 1957.

7 A. Vigants, “Propagation of Electromagnetic Surface Waves
along Cylindrical Columns with Arbitrary Radial Permittivity Varia-
tion,” Dept. of Elec. Engrg., Columbia University, New York, N. Y.,
Tech. Rept. No. 69, AF 19(604)3879; August 31, 1961.

8 A. Vigants and S. P. Schlesinger, “Some Results on Electro-
magnetic Surface Wave Propagation Along Inhomogeneous Cylin-
ders,” Dept. of Elec. Engrg., Columbia University, New York, N. Y.,
Tech. Rept. No. 70, AF 19(604)3879; January 10, 1962.
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Fig. 1—The radially inhomogeneous cylinder surrounded by free
space. (a) Geometry. (b) Example of permittivity variation with-
out discontinuities in the inhomogeneous region. (¢) Example of
permittivity variation with a discontinuity in the inhomogeneous
region.

permissible in a cylindrical medium with radial per-
mittivity variation. This is the same result as that ar-
rived at by physical reasoning—taking the case of con-
tinuous radial variation as the limiting case for a set of
homogeneous shells. Therefore the postulated surface-
wave mode fields inside the cylinder can be expressed as
functions of radius multiplied by exp i{(wt—n¢p—0Bz)
where w is the radian frequency and 3 the phase constant
of a surface-wave mode. The solutions in the homogene-
ous outside medium are of the same form.? Since the
circumferential variation inside and outside the cvlinder
can be described by the same set of functions, the char-
acteristic equation can be formulated for a single term
in the solution, or mode, as is done in the case of a homo-
geneous cylinder.? This will now be done taking # as an
integer larger than one since the modes of interest in
this work are higher order modes on full cylinders.

The fields occurring in the formulation of the bound-
ary value problem are expressed as unknown functions
of radius multiplied by exp i(wt —n¢ —Bz). The unknown
radial variations are expressed in a particular form,
normalized radius raised to a power multiplied by an
unknown function of the radius, in order to simplify the

9 S. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Company, Inc., New York, N. Y., pp. 425—428; 1943.
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algebra in subsequent expressions. The specific expres-
sions are
Ea(r) ¢) = f) = xe f1<')“) exp I’(wt — n¢ — BZ)
Ey(r, 0,2, 1) = 27U fo(x) exp t(wt — ng — 33)
H.(r,¢,3,1) = ing'a"  f3(x) exp i(wt — n¢ — B2)

Hy(r, é,3,t) = ing~'a"t fulx) exp i(wt — n¢ — Bz) (1)
where
x = kr
k= o’upey = (2m/No)?
n0 = (uo/€0)'/%. (2)

The differential equations for the unknown functions
of the radius are obtained by using (1) in Maxwell’s
equations. This results in a fourth-order system of ordi-
nary differential equations with variable coeffcients

(d 'dx)F(x) = A(x)F(x) (3)
where
f1(1'>
1[2(.9[)
Fla) = ’f:a(l‘) . “
[ﬂ(x)

The order of the system of differential equations re-
flects the coupling of the fields due to the permittivity
variation and agrees with that obtained using Hertz
potentials® or the separation of variables technique.

The description of the medium is contained in the
coefficient matrix of the differential equation

l' —n 0 —nl/e —(e—U/e
i 0 —nu (ex?—n?) e nl /e
Alv) = 7‘ )
x —nl" —(e— 0% — 0
L(exg—-n?) nl’ 0 —n
U =Bk (5)

where € is the relative permittivity, a function of the
normalized radius. It can be shown that as x approaches
zero as the center of the cylinder is approached, (3) hasa
nonsingular solution which tends towards a constant.
Hence a physically significant initial value for F(x) is

F(0) = constant. (6)

This means, from (1), that fields near the axis of the
cvlinder vary as x* and x*~'. This agrees with physical
reasoning since in the homogeneous case® the Bessel
functions give a field variation as x* and x*~' near the
axis of the cylinder. Investigation of A(0) shows that
there are only two independent constants in F(0)., A
convenient way to express F(0), using A(0), is
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f1(0) = n=(UB — D)
f2(0) = B
F50) = — n1[e(0)B — UD)
fu(0) = D (7)

where B and D are field magnitude constants.

A basic requirement of the boundary value problem
formulation is that the solution in the inhomogeneous
medium be expressed in a form which is convenient in
the solution of the characteristic equation. In particular
the requirement is for expressions which simplify both
analyvtical work and digital computer evaluation of the
characteristic equation. This can be achieved by ex-
pressing the solution of (3) as

F(x) = B(x, 0)F(0) (8)

where B(x, 0) is the fundamental matrix for (3). The
properties and construction of fundamental matrices are
part of the theory of differential equations.!® If A(x) is
known then B(x, 0) can be computed: one way of doing
it is outlined in the Appendix.

The value of F(x) on the boundary, approached from
the inhomogeneous region, expressed in terms of F(0) is

(9

If there is a discontinuity such as shown in Fig. 1(c),
then

F(kb~) = B(kb~, 0)F(0).

B(kb~, 0) = B(kb~, kat)B(ka, 0) (10)

since F(x) is continuous across discontinuities in per-
mittivity. Hence dis -ontinuities are taken care of by
cascading fundamental matrices for the different re-
gions. Because of the continuity of F(x) the boundary
condition is simply

F(kb*t) = F(kb™) (1)
or using (9)

F(kb") = B(kb~, 0)F(0) (12)

where F(kbt), the value on the boundary approached
from outside, is given by appropriate homogeneous
medium solutions.®

Silkb) = (kb)) MK, (q)}
folkb™) = (kb){q/2(1 — UY}{ N|Kor(g) + Knir(g)]
+ MU[K,-1(9) — Kua(]}
(kb)™{ N K. (q)}
(kb)=*{q/2(1 — U} { M[Koos() + Kapr(g)]
+ NU[Kuar(g) — Knia(@]}. (13)

Il

Js(kb™)
fu(kb*)

I

1 E.A. Coddington and N. Levinson, “Theory of Ordinary Dif-
ferential Equations,” McGraw-Hill Bock Company, Inc., New York,
N.Y,, pp. 67-74; 1955.
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There are two field magnitude constants, A/ and N,
contained in the left-hand side of (12). The right-hand
side contains two other field magnitude constants, B and
D, in F(0). The description of the inhomogeneous
medium is contained in B(kb~, 0).

The characteristic equation is obtained by arranging
the terms of (12) in the form

B
ol Pl=0 (14)
uwl=
N
which gives the characteristic equation
det C =0 (13)

since the field magnitudes must be nonzero. The ele-
ments of the determinant are

ca = ban U 4 by — b,y 'e(0)

cio = — bt + b U+ by
t=1,2,3,4
C13 = C34 = — (kb)"Kn((]>
(k) V
C23 = Caq = '—E—‘“ U[Kn—l(fj) - [Xu+1(9)]
q

Caz = cu =0

kb)?fn
Cyy = Ca4 = (**2 - [Kypl(q) + K, ;-1((/)]
q

(16)

with the first two columns of C describing the inhomo-
geneous medium and the last two the homogeneous
bounding medium. The b,, are elements of the funda-
mental matrix B(kb™, 0).

The characteristic equation yields eigenvalue pairs
(g, kb) which characterize surface-wave modes on
radially inhomogeneous cylinders. The quantity ¢ is a
radial eigenvalue for the fields outside the cvlinder.?

For a given surface-wave mode there is a frequency
below which this mode does not exist. This is labeled
“cutoff” frequency in surface-wave terminology. At
cutoff

U=pgk=1 17)

which implies from?

(g/Rb)* = U* — 1 (18)
that g is zero if kb is finite and nonzero. An assumption
can be made, based on physical reasoning and homo-
geneous cylinder cutoff expressions, that kb will be
finite and nonzero for the higher order modes considered
in this work.

As g approaches zero some elements in (16) become
singular and algebraic manipulation is necessary.” To
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obtain the cutoff equation K,.1(g) is eliminated using
recursion formulas. For small ¢

lim K, 1(q)/qK.(q) = 1/2(n — 1).

¢—0

(19)

When this is used the dominant term in the character-
istic equation is that containing ¢=2. The coefficient of
this term gives the cutoff equation

lim
U1

{(611 - 631) (622 + 642) + (621 + 041)(632 - 012)

+ [(kb}2
1

n —

— nj| (c11c50 — c,nmz)} = 0. (20)

The unknown quantity in this equation is the cutoff
value of kb.

It is interesting to note that a single equation gives
cutoff values for all higher order modes as opposed to a
set of two equations for homogeneous cylinders.!:?

Designation of Solutions

The inhomogeneous cylinder problem is a generaliza-
tion of the homogeneous cvlinder problem. To avoid
confusion in borderline cases the system of mode desig-
nations for the inhomogeneous cvlinder will be identical
with that for the homogeneous cylinder. Specifically,
homogeneous cylinder solutions are characterized by
(p, q) pairs' with corresponding (¢, kb) pairs obtained
from the expression

P+ g = (e = D(kD)"

e = const.

I

20

The system!:? used for classifying homogeneous cylinder
modes can be summarized as follows for # larger than
one. For a given # and ¢ the (g, kb) pairs are ordered
according to the magnitude of kb, starting with the pair
containing the lowest value of kb. The solution corre-
sponding to the first (g, kb) pair is called the HE,; mode.
The sequence of mode designations for solutions cor-
responding to the subsequent (¢, kb) pairs is EH,,
HE.;, EH,;, HE,;, etc. The confusing situation of two
modes with the same subscripts, HE,,,, and EH,,, is the
result of investigations!! to determine which of the field
components, electric or magnetic, in the direction of
propagation contributes more to certain other field com-
ponents. For inhomogeneous cylinders the eigenvalue
pairs (g, kb) will be ordered and mode designations as-
signed to this sequence as described for the homogene-
ous case.

SoME REsuULTS

The characteristic equation and the cutoff equation
were used to determine HEy and EHy, mode parameters
for permittivity models represented by the first three

1 R, E. Beam, M. M. Astrahan, W. C, Jakes, H. H. Wachowski,
and W. L. Firestone, “Investigations of Multimode Propagation in
Waveguides and Microwave Optics,” Microwave Lab., Northwestern.
University, Evanston, T1l., Rept. AT1 94929, ch 5; 1949.



1962 Vigants and Schlesinger: Surface Waves on Radially Inhomogeneous Cylinders 379

4 ! CONDUCTING PLATES
€ / \
3 F INHOMOGENEOUS
CYLINDER
q | /b
2
! b
o
EM,, CUTOFF 90
o} LENGTH OF RESONATOR = 5"
2.0 2.5 3.0
kb (a)
1.0 [
EH,, CUTOFF 4J
0.8
Xg/No \
E \
0.6
(b)
2o Kb 2.5 3.0 Fig. 4—The surface wave resonator. (a) Cross section. (b) Sketch of
. . coupling hole between end of x-band waveguide and surface wave
Fig. 2—HEy mode parameters for the permittivity resonator end plate. The rectangular waveguide is excited in the
variation e=2-6(r/b)—5(r/b)?, 0<r<b. TE;p mode.

- .
a)— 2D a) —= - < : -
e // A ‘
S / N
0.8 - / 0.8 - / AN
/ ! \
2 / // \
]x f, // [xle ;
/
/
~— b) . //=— b
0.4 } / 0.4 // )
// !
/" E_ VARIATION ! E, VARIATION
s b4 ! (4
7 4
'
o L&z L 1o ] 1
o 0.5 1o o 0.5 1.0
r/b r/b
12
2.0 [
aj— ~— q)
- -
0.8 lx f 4] // \\
2 A a \
Ix f3 e //
b)—;-/ ol [ /= D) \
0.4 | ’ \
Y / \
e / \
i / \
/// H, VARIATION 1 Hy VARIATION
o - L | o 1 J
o 0.5 1.0 o 0.5 1.0
r/b r/b
Fig. 5—Photograph of surface wave resonator with one end plate
Fig. 3—Radial variation of electromagnetic fields for the HEy mode. removed, showing half of an inhomogeneous six-layer experi-
a) e=4—-3(r/by, 0<r<b, ¢=1.85 kb=2964. b) ¢=2.56, mental permittivity model in place in the cavity. The other half

0<r<b, g=1.85, kb =2.949. of the permittivity model is displayed near the edge of the cavity.
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b=15/32"
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(b)
Fig. 6—Experimental permittivity models with positive slopes. (a)
Experimental three-step approximation of the theoretical varia-

tion e=2.50+3(r/b), 0<r<b. (b) Experimental six-step approxi-
mation of the theoretical variation e=2.75+43(r/b), 0<r<b.
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Fig. 7—Recorder plot of cavity resonances sensed with a probe for

the experimental three-step permittivity variation shown in
Fig. 6(a).

terms of a power series in (7/b).

€ = dy+ ds(r/b) + ds(r/b)?
=1

r<b

r > b. (22)

Propagation characteristics of a number of permittivity
models of interest to the authors were determined”s.
A typical set of characteristics is shown in Fig. 2. The
general shapes of the characteristics are similar to those
of homogeneous cvlinders!,

The radial variation of electromagnetic fields in the
inhomogeneous cylinder is of interest because the func-
tions representing the variations are untabulated. The
radial variation of fields can be computed once the
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Fig. 8—Experimental verification of theory using permittivity models
with positive slopes shown in Fig. 5. (a) Theoretical data for
e=2.5043(r/b), 0<r<b and experimental data for the corre-
sponding three-step approximation of the theoretical model. (b}
Theoretical data for e=2.75+3(r/b), 0<r<b and experimental
data for the corresponding six-step approximation of the theo-
retical model.

eigenvalues are known by first using (14) to find the
field magnitude constants and then using (8). Examples
were considered where an inhomogeneous and a homo-
geneous cylinder have the same eigenvalue pair (¢, kb).
Under these conditions guide wavelength measurements
alone would not suffice to distinguish between the two
cylinders. The data for two such cylinders are shown in
Fig. 3. To simplify comparison the electric field z-com-
ponent magnitudes have been normalized to unity on
the boundary. The eigenvalues are not exactly the same
but differences of about one per cent in kb will not
affect the field drawings significantly. The results of
Fig. 3 show that the radial variation of E, and /. is
not described by the same function of radius, whereas
in the homogeneous case the radial variation of E, and
M, is given by the same Bessel function.

The theoretically predicted propagation character-
istics were verified experimentally for two typical cases,
using a surface-wave resonator and experimental per-
mittivity models composed of homogeneous shells. The
surface-wave resonator is shown in Figs. 4 and 5 and two
experimental permittivity models are shown in Fig. 6.
The cavity resonance plots for one of these are given in
Fig. 7. The heights of the resonance peaks are not
directly related to energy levels since for each resonance
the sensing probe was at a different point of the standing
wave in the cavity. The experimental and theoretical
data are correlated in Fig. 8 with the conclusion that
experimental points approach theoretical curves as the
experimental models approach the theoretical models.
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CONCLUSION

The characteristic equation and the cutoff equation
for higher order surface-wave modes on cylinders with
arbitrary radial permittivity variation are derived
in terms of the fundamental matrix of a set of differential
equations. Some theoretical and experimental results
are given for the HE; and EHy modes as an illustration.

The advantages of the fundamental matrix formu-
lation of the inhomogeneous cylinder problem are com-
pact analytic expressions and results which can be
readily programmed for computation. The computation
is not overly involved and hence the mode spectrum and
properties can be obtained on a small computer such as
an IBM 1620.

An extension of the ideas developed in this work to
certain problems in plasmas!?~'® is possible since the
method developed here can be modified to include a
tensor permittivity which is a function of frequency and,
rather important for a realistic approach, of the radius.
Additional differential equations mayv be incorporated
in the formulation. Under these conditions the possi-
bility for analytical work afforded by the coefficient
matrix of the system of first-order differential equations
becomes important. This is a problem distinct from that
discussed in this work, and a first application to it of the
ideas developed in this work has giveninteresting results.

APPENDIX
Empirical Cutoff Expressions

The cutoff equation for inhomogeneous cvlinders was
formulated with digital computer solution in mind. In
practical applications of the theory it is desirable, after
the limits of permittivity variation are established, to
have an expression for estimating cutoffs which does not
require the use of a digital computer every time the per-
mittivity model is changed. Such an expression can be
derived by introducing the notion of an equivalent
permittivity. As an illustration, HE, and EHg mode
empirical cutoff relationships will be derived for the
type of permittivity variation described in Table 1.

The notion of an equivalent permittivity is introduced
as follows: Let

kb, = cutoff value of kb
€., =permittivity of a homogeneous cylinder which
has the same kb, as the inhomogeneous cylinder.

12 F. H. Northover, “The propagation of electromagnetic waves
in ionized gases,” IRE TRANS. ON ANTENNAS AND PROPAGATION,
Special Supplement, vol AP-7, pp. S340-5360; December, 1959.

12 A, W, Trivelpiece and R. W. Gould, “Space charge waves in
cvlindrical plasma columns,” J. 4 ppl. Phys., vol. 30, pp. 1748-1793;
November, 1959.

1V, Beve and T. E Everhart, “Fast Waves in Plasma Filled
Waveguides,” Electronics Res. Lab., University of California,
Berkeley, Calif., Ser. No. 60, Issue No. 362, AF 19(616)6139; July
11, 1961.

153V, Van Tuyl Rusch, “Surface Waves on a Plasma Clad Cylin-
der,” Elec. Engrg. Dept, University of Southern California, Los
Angeles, Calif., Rept No. 82-202, AF 19(604)6193; September, 1961.
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TABLE I

PERMITTIVITY MODELS FOR WHICH HEy anp EHy Mone
PARAMETERS WERE COMPUTEDS®

Coefficients in (22)
Model No.
d; ds d;
1 2.00 2.00 0
2 2.00 4.00 0
3 2.00 6.00 0
4 2.50 3.00 0
5 2.75 3.00 0
6 5.50 —3.00 0
7 5.25 —3.00 0
8 2.75 1.50 0
9 4.25 —1.50 0
10 8.00 —4.00 0
11 2.00 0 4.00
12 4.00 0 —3.00
13 4.00 0 4.00
14 6.00 0 2.00
15 6.00 0 —2.00
16 8.00 0 —2.00
17 8.00 0 —4.00
18 2.00 2.00 2.00
19 2.00 6.00 —5.00
20 5.00 —3.00 3.00
21 8.00 —2.00 —2.00

The average permittivity for (22) is

G = f d(r/b) = dy + (dy/2) + (d5/3).  (23)

0

It is assumed that for permittivity models within par-
ticular limits the equivalent permittivity can be ex-
pressed as a weighted average

fa = b+ wudy/2) + wilds/3) (24)

with weighting constants w; and w,.

The weighting constants are found by solving the
exact cutoff equation for kb, and using this value of kb,
to determine the equivalent permittivity from homo-
geneous cylinder cutoff data! shown in Figs. 9 and 10.
Then from permittivity models with d; equal to zero,

see Table I,

wy = 2(eeq — d1)/d2 (25)
and from models with d; equal to zero,
wy = 3(€eq - dl)/d‘i (26)

For the HE,; mode and models listed in Table I the
weighting constants fall between the limits

1.40 < wy £ 1.50

1.65 < w, < 1.87 27
with averages
wy = 1.45
wy = 1.70 (28)

Hence an approximate expression for an equivalent per-
mittivity for the HEy mode is justified

€eqHE21 =~ dl + 14‘5(d2//2) + 170(d3/3) (29)
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10 20 30
kb

Fig. 9—Permittivity as a function of kb at cutoff for the
HE,; mode on homogeneous cylinders.

20 30 4.0 50

kbc

Fig. 10—Permittivity as a function of kb at cutoff for the
EH: mode on homogeneous cylinders.

A similar derivation for the EHy mode gives
€eqBHy, =~ 41 + 1.36(d2/2) 4 1.50(ds/3)

As an illustration of the usefulness of these approxi-
mate expressions consider the permittivity model

(30)

e=8—2(r/b) — 2(r/b)}, 0<7r<b
=1, r>b (31)

for which

€eqHE,, =~ 5.45

€eqEHy =~ .64 (32)
and from Figs. 9 and 10

kbouw,, ~ 1.54

kboxn,, =~ 2.37. (33)
The digital computer results are

kboum,, = 1.55

kb.rm,, = 2.41. (34)
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Time was saved by using the approximate expressions
to predict initial values for digital computer work.

Computation

To express the fundamental matrix in a form con-
venient for computation the system of differential equa-
tions in (3) is replaced by a system of difference equa-
tions, with the order of the system retained to avoid in-
stabilities,

Fm+1 = BmFm~ (35)
This can also be written as
Fumpr = 1] B.Fs (36)

=0

where by construction the B, product is a numerical
approximation of the fundamental matrix of (3). The
B, matrix in this work was obtained from A(x) by using
a Runge-Kutta formula!? correct through terms contain-
ing the computational increment to the third power.

B =1+ (1/6)hA,
+ (4/6) (/1‘4,,;4_0 5 + 0.5]12A1",+045:1m)
+ (1/6> (hAm+1 + 2]l2Am+1Am+0.5

+ BPAnidmrosdmn — #2Amp1dn) (37)
where
I = unit matrix
Am = A(xn)
k = increment in x. (38)
The elements of 4, are singular, but since
AoFo =0 (39)

the elements of ¢ can be taken to be zero in the compu-
tation. For the models listed in Table I with

g<+

h=01 (40)

the accuracy, arrived at by considering special cases
with known solutions, was about one per cent. Eigen-
values were computed on an IBM 1620 computer. The
field variation was evaluated on an IBM 7090 computer.

16 H, Rutishauser, “Uber die Instabilitit von Methoden zur In-
tegration gewdhnlicher Differentialgleichungen,” Z. angew. Math.
Phys., vol. 3, pp. 65-74; 1952.

17 F. B. Hildebrand, “Introduction to Numerical Analysis,”
McGraw-Hill Book Company, Inc., New York, N. Y., p. 236; 1958.




