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To obtain the radiation field, (28) and (29) are sub-

stituted in (84), and the resulting integral is evaluated

by the method of stationary phase for kp>>l. The result

is

tan al (1 + Cos f))’/’

“(1 + sec aJ’/2 (cos’ (3 – see’ al)
~ (87)

The total power in the reflected surface wave per unit

width of the screen is easily computed from (86), (74)

and (76) as

J
2 sin al

P,=2 “ i. E, X HP*dz =
k(l + secal)’

. (88)
o

The power radiated per unit width of the screen, per

unit area in the direction 0 is obtained from (87), (74),
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Summary—A characteristic equation and a cutoff equation are

derived for higher order surface-wave modes on lossless isotropic

cylinders with arbitrary radial permittivit y variation. The derivation,

based on the use of the fundamental matrix of a set of differential

equations, reduces analytical work and results in expressions well

suited for digital computer evaluation of surface-wave eigenvalues

and mode spectra. The theory is applied in an investigation of HEZI

and EH21 mode propagation for a particular set of models for the
radially varying permittivity. Typical results showing eigenvalue

variation, dispersion characteristics and radial field variation, includ-

ing experimental verification of dispersion characteristics, are shown.

The method of analysis can be extended to anisotropic cylinders with

permittivity a function of both radius and frequency.

INTRODUCTION

T

?- HIS PAPER is concerned with the problem of

surface-wave propagation along Iossless isotropic

cylinders with radial permittivity variation. The

permittivity variation may be described by a function

of the radius or an experimental curve, with discontinui-

ties allowed. Step permittivity variation, such as that

created by dielectric rods and tubes made of constant
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(76) and (28) when kp>>l as

S= Refl.EnXH~*

~ 1 l+ COSO
—— ~ (89)

7rkp (1 + sec al) (secz C41 — cos~ 19)

Hence, the total radiated power is

sZ?r

Pr? = Spdb’ = A —~—
Cos al
— . (90)

o k (1 + sec CYJ tan al

It is to be noted that P,+P~ is equal to P, as given in

(35). The power reflection coefficient and the radiation

pattern are noticed to be the same with or without the

terminating perfectly conducting half-plane.
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Inhomogeneous Cylinders*

p. SCHLESINGER~, MEMBER, IRE

permittivity materia

problem.

1,2 constitutes a special case of ‘he

Electromagnetic-wave propagation along cylindrical

structures inhomogeneous in the transverse plane has

been investigated by Adler.3’4 Some basic results about

orthogonality, power flow and phase constants are ob-

tained but the general problem of formulating the dif-

ferential equations and obtaining their solutions is not

considered. .An interesting way to formulate differential

equations for fields in inhomogeneous media hay been

proposed by Smith.5 The approach is based on a transf-

ormation which contains the space dependent per-

mittivity. This involves work with quantities other than

electromagnetic fields and may not be desirable i n a

1 P. Dimnent, S. P. Schlesin~er, and A. Vigants, “,% dielectric sin-

-face wave structure: the V-line, ” IRE TI<ANS. CIN NIxc~ow~l-E
THEORYANDTECHNIQUESvol. MTT-9, pp. 332-337; July, 1961.

2 E. Suitzer, “Cylindrical waveguide modes, ” ~, Opt. Sot. A nz.,
vO]. 51, pp. 491–498; hlay, 1961.

3 R. B. Adler, “Properties of Guided t~aves on Inhomogeueous
Cylindrical Structures, ” Electronics Res. Lab., kI. I. T., Cambridge,
Mass,, Tech. Rept. No. 102; kIay 27, 1949.

4 R. B. Adler, ‘AVaves on inhomogeneous cylindrical structur es,”
PROC. lRE, vol. 40, pp. 339–348; March, 1952?.

6 P. D. P. Smith, “,%-tificial tield equations for a region where p
and e ~-arv with oositiou, ” Y. Appl. J’hys., vol. 21, pp. 1140–1 149;
Novembe;, 1950.’
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complicated surface-wave problem. Considerable insight

into the problems of formulation of differential equa-

tions for electromagnetic fields in inhomogeneous media

is obtained from Nisbet’s works A result of particular

iTLterest is a set of conditions relating the order of the

differential equations to the coordinate system and the

fllnctional dependence of the inhomogeneities. .4pplica-

tion of these conditions to the radially inhomogeneous

cylindrical medium shows that differential equations of

higher order than the second can be expected.

.LI convenient general approach for the determination

of inhomogeneous cylinder propagation characteristics

does not appear to be available. In view of this it seems

advisable to disregard the complicated methods of gen-

eration of differential equations while searching for a

way to solve the radially inhornogeneous cylinder prob-

lem and to use Maxwell’s equations directly.7, s thus

avoiding confusion of physical intuition by complicated

and possibly unnecessary mathematical devices.

The complexity of the inhomogeneous cylinder prob-

Iem is due to differential equations of the fourth order

with variable coefficients and a geometry which makes

it difficult to use expansions in series of known functions.

The radial variation of fields inside the inhomogeneous

cylinder will in general be given by untabulated and

unknown functions, and hence computation will be re-

quired to find the parameters characterizing surface-

wave propagation. Realization of this leads to the for-

mulation of a characteristic equation based on the appli-

cation of the fl{ndamental matrix of a set of differential

equations, unusual in the solution of surface wave prob-

lems.

The results are applied in an investigation of HEII

and EHzl modes for a particular set of permittivity

models, with experimental verification in some cases.

TIIEO~Y .,

The Characteristic and Cutoff Equations

The Iossless, isotropic, radially inhomogeneous cylin-

der shown in Fig. 1 presents a boundar~- value problem

with solutions characterized by eigenvalues of a char-

acteristic equation. Formulation of the bound ar~- value

problem requires knowledge of solutions inside the cyl-

inder. The separation of variables technique applied to

Lfaxwell’s equations shows that solutions of the form

exp in~ for the circumferential variation of fields are

c A. N-isbet, “Electromagnetic potentials in a heterogeneous non-
conducting medium, ” Proc. Roy. .%. (London) .1, I-01. 240, pp. 375–
381; 1957.

7 A. Vigants, “Propagation of Electromagnetic Surface \Va\-es
along Cylindrical Columns with .U-bitrary Radial Permittivity l~aria-
tion, ” Dept. of Elec. Engrg., Columbia University, New York, N. 1’.,
Tech. Rept. No. 69, AF 19(604)3879; August 31, 1961.

8 A. Vigants and S. P. Schlesinger, “Some Results on Electro-
magnetic Surface Wave Propagation Along Inhomogeneous Cylin-
ders, ” Dept. of Elec. Engrg., Columbia University, New York, X. Y.,
Tech. Rept, No. 70, AF 19(604)3879; ~~nuai-y 10, 1962.
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Fig. l—The radially inhomogeneous cylinder surrounded by free
space. (a) Geometry. (b) Example of permitti~rity \-ariation with-
out discontinuities in the inhomogeneous region. (c) Example of
permitti~-ity I-ariation with a discontinuity in the inhomogeneous
region.

permissible in a cylindrical medium with radial pel--

mittivity variation. This is the same result as that ar-

rived at by physical reasoning—taking the case of con-

tinuous radial variation as the limiting case for a set of

homogeneous shells. Therefore the postulated surface-

wave mode fields inside the cylinder can be expressed as

functions of radius multiplied by exp i(cot – nd –~z)

where u is the radian frequency and,6 the phase constant

of a surface-wave mode. The solutions in the homogene-

ous outside medium are of the same form. g .Since the

circumferential variation inside and outside the cylinder

can be described by the same set of functions, the char-

acteristic equation can be formulated for a single term

in the solution, or mode, as is done in the case of a homo-

geneous cylinder. g This will now be done taking n as an

integer larger than one since the modes of interest in

this work are higher order modes on full cylinders.

The fields occurring in the formulation of the bound-

ary value problem are expressed as unknown functions

of radius multiplied by exp i(cot —n@ —fiz). The unknown

radial variations are expressed in a particular form,

normalized radius raised to a power multiplied by an

unknown function of the radius, in order to simplify the

s S. A, Schelkuuoff, “Electromagnetic \Vaves, ” D. Van Nostrand
Cmnpany, Inc., NTew York, N. Y., pp. 425-A28; 1943.
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algebra in subsequent expressions. The specific expres-

sions are

where

x=kr

k’ = cd’poeo = (27r,ixo)’

no = (&o/en)]’*. (2)

The differential equations for the unknown functions

of the radius are obtained by using (1) in l\laxwell’s

equations. This results in a fourth-order system of ordi-

nary differential equations \vith variable coefficients

(d ‘d.Y)F(.Y) = A(T) F(.v) (3)

where

(4)

j-l(o) = 12-’(L’B – D)

“f,(f)) = B

f,(o) = – }2-’[6(0)3 – 7JD]

f,(0) = D (7)

whet-e B and D are field magnitude constants.

.% basic requirement of the boundary value problem

formulation is that the solution in the inhomogeneous

medium be expressed in a form which is convenient in

the solution of the characteristic equation. In particular

the requirement is for expressions which simplify both

anal~tical work and digital computer evaluation of the

characteristic equation. This can be achieved b>- ex-

pressing the solution of (3) as

F(.Y) = B(.v, O)F(O) (8)

where B(.Y, O) is the jundamcrztal matrix for (3). ‘The

properties and construction of fundamental matrices are

part of the theory of differential equations.l” If A(x) is

known then B(x, O) can be computed; one way of doing

it is outlined in the .+ppencfix.

The value of F(x) on the boundary, approached from

the inholnogeneous region, expressed in terms of F(0) is

F(kb–) = B(kb–, O)F(O) . (9)

1A If there is a discontinuity such as shown in Fig. 1!(c),

The order of the system of differential equations re-
then

fleets the couplin~ of the fields due to the permittivity B(kb-, O) = B(kb-, ka+)B(ka-, O) (lo).-
variation and agrees with that obtained using Hertz

potentials or the separation of variables technique.
since F(x) is continuous across discoutinuities in per-

‘Fhe description of the medium is contained in the
mittivity. Hence dis ‘continuities are taken care of by

coefficient matrix of
cascading fundamental matrices for the different re-

the differential equation

o — lbl~;’e —

— ?1 (,.+ }2’) ! 6

– (,– [“) — ?1

71[T o

gions. Because of the continuity of F(x) the boundary

(,– [’)/,

1

condition is simply

721:,/6

1

F(kb+) = F’(kb-) (11)

o
or using (9)

— ?2
F(kb+) = B(kb-, O)F(O) (12)

where c is the relative permittivity, a function of the

norinalized radius. It can be shown that as x approaches

zero as the center of the cylinder is approached, (3) has a

nonsingular solution which tends towards a constant.

Hence a physically significant initial value for F(x) is

F(0) == constant. (6)

(5)
where F(kb+), the value on the boundary approached

This means, from (1), that fields near the axis of the

cylinder vary as x“ and X“–I. This agrees with physical

reasoning since in the homogeneous caseg the 13essel

functions give a field variation as x“ and x“-’ near the

axis of the cylinder. Investigation of A(0) shows that

there are only two independent constants in F(0). .4

convenient way to express F(0), using A(O), is

from outside, is given by appropriate homogeneous

medium solutions. g

f,(kb+) = (kb)-’ ! MK.(q) }

f,(kb+) = (kb)-”{ g/2(1 – ZJ’) ] { ~[K.-l(q) + K.+l(q)]

+ MU[Kn-,(q) – K?L+l(q)l 1

j,(kb+) = (kb)-r’ [ .!’K,,(q) }

f,(kb+) = (kb)-”{ q~2(1 – tr’) } [ ~[K,,-, (q) + K,+,(g)]

+ Ntj[K.-~(q) – K.+l(q)] ]. (13}

10 E. ..\. Coddingtoll and .N. Levinson, ‘(Theory of Ordimm Dif-
ferential Equations, ” hIcGrav-Hill Book Company, Inc., New York,
x. Y., pp. 67-74; 1955.
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There are two field magnitude constants, M and N,

contained in the left-hand side of (12). The right-hand

side contains two other field magnitude constants, B and

D, in F(0). The description of the inhomogeneous

medium is contained in B(kb–, O).

The characteristic equation is obtainecl b>- arranging

the terlns of (12) in the form

(14)

which gives the characteristic equation

det C=O (15)

since the field magnitudes must be nonzero. The ele-

ments of the determinant are

C,, = C,, = – (kb)r’K,,(q)

c:<:{ = C14 = o

with the first two columns of C describing- the inhomo-

geneous medium and the last two the homogeneous

bounding medium. The b,, are elements of the funda-

mental matrix B(kb–, O).

The characteristic equation yields eigenvalue pairs

(q, kb) which characterize surface-wave modes on

radially inhomogeneous cylinders. The quantity q is a

radial eigenvalue for the fields outside the cylinder. g

For a given surface-wave mode there is a frequency-

below which this mode does not exist. This is labeled

“cutoff” frequency in surface-wave terminolog~-. At

cutoff

[7=/j;k=l (17)

which implies fromg

(q,/’kb)’ = 1’ – 1 (18)

that q is zero if kb is finite and nonzero. An assumption

can be made, based on physical reasoning and honlo-

geneous cylinder cutoff expressions, that kb will be

finite and nonzero for the higher order modes considered

in this work.

As q approaches zero some elements in (16) become

singular and algebraic manipulation is necessary.7 To

obtain the cutoff equation A’,,+l(g) is eliminated using

recursion formulas. For small q

lim K7t-l(g),/qK. (g) = 1/2(}1 – 1). (19)
c-o

~~Then this is used the dolllinant terlll in the ~llaracter.

istic equation is that containing q–2. The coefficient of

this term gives the cutoff equation

{
lim (cll – c?J(c22 + 642) + (G21 + c41)(cJ2 – cIJ
LTL1

‘[%-”1
(c,,C,, – ~,1c12)} = o. (20)

The unknown quantity in this equation is the cutoff

value of kb.

It is interesting to note that a single equation gives

cutoff values for all higher order modes as opposed to a

set of two equations for homogeneous cylinders. l,?

Designation of Solutions

The inhomogeneous cylinder problem is a generaliza-

tion of the homogeneous cylinder problem. To avoid

confusion in borderline cases the s~-stern of mode desig-

nations for the inhomogeneous cylinder will be identical

with that for the homogeneous c~linder. Specifically,

homogeneous cylinder solutions are characterized by

(P, q) pairs’ with corresponding (q, kb) pairs obtained

from the expression

~~ + @ = (, – I)(kb)?

e = const. (21)

‘~he svstelnl,: used for classifying homogeneous Cylinclel”

modes can be summarized as follows for n larger than

one. For a given n and q the (g, kb) pairs are ordered

according to the magnitude of kb, starting with the pair

containing the lowest value of kb. The solution corre-

sponding to the first (q, kb) pair is called the HE.l mode.

The sequence of mode designations for solutions cor-

responding to the subsequent (q, kb) pairs is EH.l,

HE,,2, EH.1, HE.~, etc. The confusing situation of two

modes with the same subscripts, HE.~ and EHz~, is the

result of investigations IL to deterlnine which of the fiekf

components, electric or magnetic, in the direction of

propagation contributes more to certain other field con~-

ponents. For inhomogeneous cylinders the eigenvalue

pairs (g, kb) will be ordered and mode designations as-

signed to this sequence as described for the honlogene-

ous case.

SOME RESULTS

The characteristic equation and the cutoff equation

were used to determine HEZI and EHjl mode parameters

for permittivity models represented by the first three

u R, E. Beam, M. M. Astrahan, W. C. Jakes, H. H. WachowA~i,

and W. L. Firestone, ‘[Investigations of Multimode Propa~ation in
Waveguides and Microwave Optics, ” Microwave Lab., Northwestern
IJniversity, E\anston, Ill., Rept. AFI 94929, ch 5; 1949.
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Fig. 4—The surface wave resonator. (a) Cross section. (b) Sketch of
coupling hole between end of x-band waveguide and surface wave
resonator end plate. The rectangular waveguide is excited in the
TEIO mode.

Fig. 5—Photograph of surface wave resonator with one end plate
removed, showing half of an inhornogeneous six-layer experi-
mental perrnittivity model in place in the cavity. The other half
of the permittivity model is displayed near the edge of the cavity.
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Fig. 6—Experimental permitti~,ity models with positive slopes. (a)
Experimental three-step approximation of the theoretical varia-
tion e=2.50 +3(r/b), 0< r <b. (b) Experimental sin-step approxi-
mation of the theoretical variation c =2.75 +3(r/b), 0< r <b.
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Fig. 7—Recorder plot of ca~-ity resonances sensed with a probe for
the experimental three-step permittivity variation shown in
Fig. 6(a).

terms of a power series in (r/b).

e = dl + dz(r/b) + d3(r/’b)2 r<b

=1 r>b. (22)

Propagation characteristics of a number of permittivity

models of interest to the authors were deter mined7, s.

A typical set of characteristics is shown in Fig. 2. The

general shapes of the characteristics are similar to those

of homogeneous cylinders.

The radial variation of electromagnetic fields in the

inhomogeneous cylincfer is of interest because the func-

tions representing the variations are untabulated. The

radial variation of fields can be computed once the

1.0 - I I 0
1

EH z, ,THEORY+ 0

I 1 1 I I I

1.5 2.0 25 30

kb

(a)

1.0 I

LT
0

0

‘H21
, TKEORY

0.8 -
HE ~1 , THEORY —

kglio

0,6 - o-EXPERIMENTAL POINT

Qoo

I 1 1 I I 1
1.5 20 2.5 3.0

kb

(b)

Fig-. 8—Experinlental verification of theory using pel-mittivity models
with positive slopes shown in Fig. 5. (a) Theoretical data for
~= 2,5o +3(r/~), 0< r <b and experimental data for the corre-

sponding three-step approximation of the theoretical model. (b)
Theoretical data for e= 2.75 +3(r/b), O<r< b and experimental
data for the corresponding six-step approximation of the theo-
retical model.

eigenwdues are known by first using (14) to find the

field magnitude constants and then using (8). Examples

were considered where an inhomogeneous and a honlo-

geneous cylinder have the same eigenvalue pair (q, kb).

Under these conditions guide wavelength measurements

alone would not suffice to distinguish between the two

cylinders. The data for two such cylinders are shown in

Fig. 3. To simplify comparison the electric field z-com-

ponent magnitudes have been normalized to unity on

the boundary. The eigenvalues are not exactly the stime

but differences of about one per cent in kb will not

affect the field drawings significantly. The results of

Fig. 3 show that the radial variation of E, and H, is

not described by the same function of radius, whereas

in the homogeneous case the radial variation of Ez and

HZ is given by the same Bessel function.

The theoretically predicted propagation character-

istics were verified experimentally for two typical cases,

using a surface-wave resonator and experimental per-

mittivity models composed of homogeneous shells. The

surface-wave resonator is shown in Figs. 4 and 5 and two

experimental permittivity models are shown in Fig. 6.

The cavity resonance plots for one of these are given in

Fig. 7. The heights of the resonance peaks are not

directly related to energy levels since for each resonance

the sensing probe was at a different point of the standing

wave in the cavity. The experimental and theoretical

data are correlated in Fig. 8 with the conclusion that

experimental points approach theoretical curves as the

experimental models approach the theoretical models.
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CONCLUSION

The characteristic equation and the cutoff equation

for higher order surface-wave modes on cylinders with

arbitrary radial permittivity variation are derived

in terms of the fundamental matrix of a set of differential

equations. Some theoretical and experilnental results

are given for the HE! I and EHZI modes as an illustration.

The advantages of the fundamental matrix formu-

lation of the inhomogeneous cylinder problem are conl-

pact analytic expressions and results which can he

readily programmed for computation. The computation

is not overly involved and hence the mode spectrum and

properties can be obtained on a small computer such as

an IBNT 1620.

An extension of the ideas developed in this work to

certain problems in plastnas 12–15 is possil)le since the

method developed here can be modified to include a

tensor permittivity which is a function of frequency and,

rather important for a realistic approach, of the radius.

.~dditional differential equations n~ay be incorporated

in the formulation. l. Tnder these conditions the possi -

bilit>- [or analytical work afforded by the coefficient

matrix of the system of first-order differential equations

becomes important. This is a problem distinct froln that

discussed in this work, and a first application to it of the

ideas developed in this work has given interesting results.

.%’PLINDI’Y

The cutoff equation for inholllogeneous cylinders was

fo]-nlulated with digital computer solution in mind. in

practical applications of the theory it is desirable, after

the limits of permittivity variation are established, to

ha~’e an expression for estimating cutoffs which does not

require the use of a digital computer every time the per-

Inittivity model is changed. Such an expression can be

derived by introducing the notion of am equivalent

permittivity. As an illustration, HEZ1 and EHZ1 mode

empirical cutoff relationships will be derived for the

type of permittivity variation described in Table I.

The notion of an equivalent permittivity is introduced

as follows: Let

kb. = cutoff value of kb

C,q = permittivity of a homogeneous cylinder which

has the same kb,, as the inhomogeneous cylinder.

‘* F. H. NorLhover, “The propagation of electl-omaglletic waves
iu ionized gases, ” IRE TRAINS. ON ~N’rf3NNAs AND pROPAGAL’10N,
Sp:czal Supplement, vol %P-7, pp. S340-S.?60; December, 1959.

M .\. W. TrivelPiece and R. W. GC,Uld, ~’Space charge waves in
r~,liudricd plasma columns, “ J. .4 ~ji. Pky.s., vol. .?0, pp. 1748-1 793;
~o\-ember, -1959.

‘ 1V. Bevr and T. E E~-erhart, ‘[Fast Waves in Plasma Filled
\Vaveguides, ” Electronics Res. Lab., Universit> of California,
Berkeley, Calif., Ser. So. 60, Issue No. 362, AF ~9(616)6139; July
11, 1961.

‘5 ~1-, Van Tu371 Rusrb, “Surface tyaves on a Plasma Clad Cylin-
der, “’ Elec, IZngrg. DeDt , [University of Southern California, LOS
Angeles, Calif., Rept Yo. 82-202, .AF 19(60A)6195; September, 1961.
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%J<MITTIVI1 Y ~lOL)ELS FOR WHICH l-iE2, AND E& hlODII
PA~AM~TERS w~roz COMIYW~D8

illodel !Yo.

5
6
7
8
9

14
15
16
17
18
19
20
21

Coefficients in (22)

d,

2.00
2,00
2.00
2.50
2.75
5.50
5.25
2.75
4.25
8.00
2.00
4.00
4.00
6.00
6.00
8.00
8.00
2.00
2.00
5.00
8.00

d2

2.00
4.00
6.00
3.00
3.00

–3.00
–3.00

1.50
–1.50
–4.00

o
()
o
0
0

:
2.00
6.00

–3.00
–2.00

o

;
o
0
0
()
o
0

4’00
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–2.00

The average permittivity for (22) is

(

1

e:,,. = ed(~~b) = dl + (dz/’2) + (dJ3) . (23)
~ 0

It is assumed that for permittivity models within par-

ticular limits the equivalent permittivity can be ex-

pressed as a weighted average

,(,q = d] + w2(d2/2) + w,(d3/3) (24)

with weighting constants WI and wZ.

The weighting constants are found by solving the

exact cutoff equation for kb, and using this value of kbc

to determine the equivalent perrnittivity from honlo-

geneous cylinder cutoff datal shown in Figs. 9 and 10.

Then from permittivity models with ds equal to zero,

see Table 1,

W2 = 2(Eeq — d])/d2 (25)

and from }nodels with dz equal to zero,

721:]= 3(6cq — dl)/d3. (26)

For the HEZ, mode and models listed in Table I the

weighting constants fall between the limits

1.40< W2 < 1.50

1.65< W, < 1.87 (27)

with averages

w~ = 1.45

W3 = 1.70 (28)

Hence an approximate expression for an equivalent per-

mittivity for the HEZ1 mode is justified

6..HE2I ~ ~1 + 1.45 (dz/~) + 1.70(d3/3). (29)
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Fig. 9—Permittivity as a function of kb at cutoff for the
13E21 mode on homogeneous cyliuders.

8
\

Time was saved by using the approximate expressions

to predict initial values for digital computer work.

6

e
Corn+utation

\

To express the fundamental matrix in a form con-

venient for computation the system of differential equa-

tions in (3) is replaced by a system of difference equa-

tions, with the order of the system retaineci to avoid in-

stabilities. 16

Fm,~l = 13w,Fn, . (35)

This can also be written as

Fm+l = jj B,Fo (36)
t=iJ

where by construction the B, product is a numerical

approximation of the fundamental matrix of (3). The

Bm matrix in this work was obtained from A (x) by using

a Runge-Kutta formula IT correct through terms contain-

ing the computational increment to the third power.

Bm = I + (1/6)h4m

+ (4/6) (A.4~+0 3 + 0.5h’.l.,+O.,.4J

8
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Fig. 10—Permittivity as a function of kb at cutoff for the
EHZ1 mode on homogeneous cylinders.

A similar derivation for the EHZI mode gives

~eaEH21 = d, + 1.36(dJ2) + 1.50(d,/3) (30)

As an illustration of the usefulness of these approxi-

mate expressions consider the permittivity model

e = 8 — 2(y/b) — 2(r/b)z, O<y<b

= 1, v>b (31)

+ (1/6) (kA7n+1 + 2kzA.+lAn+o.5

+ l’z3Am+,Am+o.5Am – /3’.4m+,Lf.t) (37)

where

1 = unit matrix

An = A(.GJ

k = increment in x. (38)

The elements of A o are singular, but since

AOFO = O (39)

the elements of.4 o can be taken to be zero in the cornpu-

for which
tation. For the models listed in Table I with

eeqHE2L = 5.45
q<-1

~eqE1121 =S 5.64 (32)
1? = 0.1 (40)

and from Figs. 9 and 10
the accuracy, arrived at by considering special cases

with known solutions, was about one per cent. Eigen-

kbcm,, = 1.54 values were computed on an IBM 1620 computer. The

kbcm,, = 2.37. (33) field variation was evaluated on an IBM 7090 computer.

The digital computer results are ‘6 H. Rutishans:r, “Ub:~ die Iustabilitit von Methoden zur In-
tegration gewbhnhcher D1tferentialgleich ungen, ” Z. angew. Math.

kbcHE,l = 1.55 Phys., VO]. 3, pp. 65–74; 1952.
17 F. B. Hildebrand, “Introduction to Numerical Analysis, ”

kbcEH,l = 2.41. (34) iUcGraw-Hill Book Company, Inc., New York, N. Y., p. 236; 1958.


